

Technology Development

S. Gourlay, LBNL June 10, 2003

June 10, 2003 1 S. Gourlay

Outline

- LARP Technology Development Program
 - Goals and Approach
- LARP R&D Topics
- Building on the Base Programs
 - Materials
 - R&D Program
- First steps

June 10, 2003 2 S. Gourlay

Goals and Approach

- Provide basis for program planning and development
 - Program will be challenging . . .
- Cost-effective way to investigate new techniques, materials and designs
 - Build on existing Base Program R&D efforts
- Demonstrate that we achieve operational parameters as soon as possible

June 10, 2003 S. Gourlay

R&D Topics

- Performance Issues
 - High fields/gradients
 - Large aperture
 - High, radiation induced heat loads
- Program Components
 - Mechanical support structures
 - Quench Protection
 - SC strand and cable
 - Heat transfer
 - Rad hard materials
 - Appropriate IR designs

Same issues for dipoles and quadrupoles

June 10, 2003 4 S. Gourlay

Materials R&D Topics

- Conductor
 - $-Nb_3Sn$
 - J_c
 - Magnetization (D_{eff})
 - HTS?
- Cable R&D
 - Explore the limits of Rutherford-type cables
 - New techniques
 - Fully keystoned Nb₃Sn

- Radiation Resistant Materials
 - Push to limit of Superconductor
 - Then, through IR design, reduce dose to maximize lifetime
 - Need to understand limits better
 - · Nb₃Sn 500 MGy
 - · Organics 1-100 MGy

June 10, 2003 5 S. Gourlay

Initial Program

- Conceptual designs
 - Identify primary issues
- Technology Development
 - Range in complexity
 - Many important topics can be studied using a parametric approach
- Build on Base Programs
 - DOE Conductor Development Program
 - LBNL "Sub-scale magnets"
 - BNL "10-turn coils"
 - FNAL "Magnetic Mirror"

- -Technology development and fabrication techniques
- -Field reproducibility
- -Length issues
- -Field quality reproducibility

DOE Conductor Development Program

Parameter	Unit	Goal	Progress
J_{c}	kA/mm ²	> 3.0	2.4-2.6
$\mathrm{D}_{\mathrm{eff}}$	μm	< 40	70-100
L_{piece}	km	> 10	1.0-1.5
H.T. time	hr	< 400	150
Cost	\$/kA-m	< 1.5	6
	(12 T)		

Started in 2000

Phase I: improve performance

Phase II: Scale-up, cost issues

June 10, 2003 7 S. Gourlay

Nb₃Sn Critical Current Density

Nb₃Sn wires for High Field Dipoles, 1996-2002

OST has achieved world record Jc values for Nb₃Sn made by two processes

June 10, 2003 9 S. Gourlay

OST has completed production quantities of high Jc wires for use in HD-1

- MJR process (delivered Aug 2002, meets specification)
 - J_c > 2250 A/mm²; best value > 2440 without self-field correction
 - -RRR > 2
 - Yield: > 72 % piece lengths > 250 m
 - $-D_{eff} < 120$ microns
- RRP process (delivered Jan 2003, exceeds J_c specification)
 - J_c > 2750 A/mm²; best value > 3000 A/mm²
 - -RRR > 13
 - Yield: 86 % piece lengths > 250 m
 - $-D_{eff} < 120$ microns

Status of Jc optimization work

- J_c values exceeding 3000 A/mm² (12 T, 4.2 K)have been achieved in a practical Nb₃Sn conductor
- Further increases are expected from heat treatment optimization studies.
- Large gains are still possible in intrinsic Nb₃Sn layer J_c; questions remain on whether these gains can be achieved in practical conductors
- Some "tradeoff" in J_c may be required to meet other HEP goals, espeically $D_{\rm eff}$

June 10, 2003 11 S. Gourlay

R&D work on reducing magnetization effects include:

- Magnet designs that can accommodate larger magnetization effects
- Changes in composite geometry to reduce filament coupling
- Alternate fabrication approaches

Steady progress toward program goals

- Long Range Goals
 - $J_c = 3000 \text{ A/mm}^2$
 - $-D_{eff}$ = 40 microns or less
 - Piece length > 10,000 m
 - Heat treatment < 400 hr
 - Cost: < \$1.50/kA-m(12 T)

- Progress
 - $J_c = 3000 \text{ A/mm}^2 \text{ (FY03)}$
 - Proof of principle shown;
 - Practical demos in progress
 - 250-1500m for both MJR and internal Sn processes
 - -150 hr
 - 5.50/kA-m (Int. Sn)7.75/kA-m (MJR)

June 10, 2003 S. Gourlay

Bi-2212 round wire shows promise for accelerator magnets

- $J_c(12T, 4.2K, non-silver) > 2000$ A/mm² in new material (Showa)
- Long lengths(> 1500 m) are being produced
- New result: 30 strand cable; Ic = 6.8 kA at 6 T
- React/wind (BNL) and Wind/react (LBNL) coils are being made
- Not part of base LARP plan, but we will keep an eye on it ... may be important for dipole-first IR.

Cable made at LBNL

June 10, 2003 14 S. Gourlay

J_c "Crossover" for Bi-2212 and Nb₃Sn is near 14 T, but J_{eng} is x2 lower

June 10, 2003 15 S. Gourlay

Conductor Development Program Priorities

FY03

OST

- Reduce D_{eff} from 120 to 50 microns
- Improve diffusion barriers to increase Cu RRR
- Scale up HER (Hot Extruded Rod) billet size

OKAS

- Reduce $D_{\rm eff}$ from 120 to 50 microns with internal fins

Low D_{eff} in high J_c Nb₃Sn

Fundamental issue is restacking large numbers of subelements

June 10, 2003 17 S. Gourlay

SM Series: Subscale Prototypes

- · Scaled version of main magnet
 - Approx. 1/3 scale
- Field range of 9 12 Tesla
- Two-layer racetrack coils
 - 5 kg of material per coil
- Streamlined test facility
 - Small dewar
 - Basic instrumentation

- Can be used by LARP to test, for example,
 - Heat transfer
 - Alternate conductor insulation systems

SM Magnet Features

Modular, reusable components

Two layer coil

Assembled Magnet

June 10, 2003 19 S. Gourlay

BNL 10-turn coils

BNL makes 10-turn racetrack coils in modular structure. These modules (cassettes) can be mixed and matched for a variety of experiments in a rapid turn around fashion.

For example, one can easily change aperture, number of layers, type of magnet, etc.

FNAL Magnetic Mirror

Optimizing magnet technology and quench performance using halfcoils and a magnetic mirror:

- Advanced instrumentation
 - Voltage taps, spot heaters, thermometers, strain gauges
- Short turnaround time, cost effective
 - Bolted skin, same yoke and spacers
- Can be used to test quadrupole coils, as well as dipole coils.

June 10, 2003 21 S. Gourlay

A Broad Variety of Topics

- Mechanical Structures
 - Racetrack quads
 - Open mid-plane dipoles
- Rad Hard Materials
 - Insulation
 - Impregnation materials

- Heat Transfer
 - Geometry
 - Internal structures
- Cable Design
 - High keystone angles
 - Cores
 - Intrastrand Resistance

LARP Technology Development

- Rapid, cost-effective start using existing techniques and infrastructure
 - Support structure based on LBNL bladder and key assembly technique
 - Phase II use D20 tooling for 2-layer coils

230 T/m 90 mm bore

June 10, 2003 23 S. Gourlay

Summary

- Technology Development is foundation of the program
 - Initially to address LARP-related issues
 - Technology choices
 - Fast evaluation of critical issues and program scope
 - Later for program support
 - · Investigate problems
 - · Test new ideas